本帖最后由 ygvfe 于 2025-10-4 21:09 编辑
庞加莱不懂语法
一,庞加莱不懂语法
1,庞加莱猜想的内容为:
任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。
2,主项与谓项
主项中有【三维流形】,还有修饰限定主项的定语:单连通和闭流形。
谓项中有【三维球面】。
3,庞加莱猜想的主项与谓项的关系
在数学中,三维球面是一个具有三个维度的几何客体,这样的几何客体都可以归类为三维流形。
就是说,主项的内涵与外延全覆盖谓项。
4,当主项与谓项具有同样的概念内涵和外延,我们不是采用证明,而是采用种加属差定义的方法。
所以,将庞加莱猜想(命题)用定义方法:三维球面就是一个单连通的闭流形的三维流形。
5,庞加莱猜想的主项与谓项是:a,种属关系;b,是一种真包含关系;c,是传递关系。
全称判断的命题通常涉及到一个总体的所有成员都具备某项性质,如果主项包含谓项,就会以偏概全。例如“所有的学生(外延宽的)都是小学生(外延窄的)。这种命题要求对一个整体的每一个成员进行描述,而种属关系描述的是部分与整体的关系,无法准确反映全称判断的逻辑要求。因此,在逻辑推理中,种属关系不适用于全称判断的命题。
6,数学中的种属关系用定义解决。类似的定义:素数就是大于1并且只能被1和自身整除的自然数(定义是已经搞清楚的内容,将自然数划分为:自然数1,素数,合数)。
我们不能用命题形式:任何大于1并且只能被1和自身整除的自然数都是素数(命题是有待于证明的问题)。
判断,必须有两个以上的不同概念;全称判断的主项与谓项必须是两个内涵完全不同的概念。。主项是条件,谓项是结论。而庞加莱猜想的主项与谓项是同一概念的内涵,结论是条件的子项了。
7,主项的功能和谓项的概念
主项表示判断句子主要说明的人或事物;谓项说明主项的动作,状态或特征-行为-属性等。
真包含关系用于判断,常常出现错误:例如“所有的学生(外延宽的)都是小学生(外延窄的)”。
庞加莱猜想就是这种错误。把本应“所有的s是p”,说成”所有的s是s的一部分“。
8,判断句子主项不能包含谓项。或者说命题的主项不能包含谓项。
数学命题的谓项一般说主项有多少或者主项是什么性质,,例如命题【素数有无穷多】(主项“素数”与谓项“无穷多”是全异关系,素数是名词,无穷多是量词;又例如命题【e是超越数-或者说e具有超越性】,(主项”e“与谓项“超越性”在证明之前是全异关系,因为,e指自然对数的底数,是名词,e是一种实数;超越指一种属性,也是名词。在证明之后是交叉关系)。
9,庞加莱猜想的主项与谓项不是全异关系,而是真包含关系。庞加莱猜想是一个病句。
看到没有?一个错误的句子不具备判断的功能。
佩雷尔曼使用归纳法:
斯梅尔证明五维庞加莱猜想使用归纳法
命题的产生我们想想,命题是怎么产生的?需要怎么样去证明? 演绎证明某事肯定是这样,演绎是从一般到特殊,只有演绎推理形式是必然有效的,因为大范畴的存在,是小范畴存在的充分条件,所以,演绎推理是必然的因果关系推理。 归纳说明某事在实际上是有效的,归纳是从一些特殊到一般。 溯因推理是说某事可能是这样。溯因推理是推理形式最弱的一种。 溯因推理借助不完全归纳,预测成为一个命题叫做猜想(证明一个猜想是告诉你结果,让你按照规则找出原因-过程的必然性,把道理讲清楚)。 归纳只能预测,不能证明。我们证明一个数学命题就是一种整体上弱势溯因加归纳推理,每一个局部需要强势演绎推理。 为什么不能用归纳法证明? 因为设立命题时是使用少量样本归纳出来的,再用少量样本证明,就不可靠了。少量样本归纳证明只是增加了命题的可信度,不能证明整个理论的正确,这就是归纳证实的局限性。 原始信息(6=3+3,8=3+5,..。就是逐一归纳有限的样本,具有某种性质(两个素数之和),于是归纳推出“哥德巴赫猜想”推导出(预测)有无穷多个的数量样本的偶数也具有某种性质)。 在有限数量基础上归纳产生的猜想,通过演绎证明是不对等的。 归纳是在一个有穷大的样本中逐一列举, 只要样本空间没有被穷尽, 使用的都是简单枚举归纳推理。 而命题是对于无穷大的样本, 我们根本不可能穷尽该样本空间, (例如哥德巴赫猜想中的偶数就有无穷多个)因此只能使用简单枚举归纳推理,简单枚举归纳推理是一种扩大了前提条件的推理, 它的结论是不可靠的。 使用归纳推理提出假说, 其假说是非常脆弱的, 因为对它的逐一证实是绝对不可能的, 除非你穷尽样本空间, 而一旦这样, 你使用的已经不是归纳推理了。 它的脆弱性体是:只要一个反例, 就可以推翻这个假说命题。 无穷多个样本的数学定理必须是全称判断,数学家必须完成一个:由归纳出来的有限个事实样本去证实无穷多个元素的--不可能完全证实的命题进行演绎方法证明,并且结论是全称肯定判断的正确三段论只能是第一格的AAA式。这是绝大多数数学命题证明无法做到的。 溯因加归纳推理是从结果追溯原因的推理,溯因推理是采纳预测的推理.-—— 一个留待观察的假说,归纳产生的全称命题。它仅以疑问的或猜测的方式断定其结论是真的。 归纳推理是基于有限观察的,从有限样本推出一般结论的推理, 它的前提是关于个别事物具有某种性质的论断, 结论却试图得出全体事物皆具有此性质的论断,中间有一个巨大的逻辑空挡。 不完全归纳出来的全称判断形成的待证命题,怎么可能通过演绎推理回到初始信息?怎么越过这个巨大的逻辑空挡,让初始信息变成一个定理? 归纳产生的样本,推导出命题,归纳的样本没有进入命题因果关系;没有进入证据链,前提不是结论(即全称判断的命题)的必然原因,所以只能是猜测。 数学归纳法证明是在问题,被一个公式概括以后,每一个变量之间有固定的模式联系,这种情况才能使用数学归纳法:1成立,n成立,n+1也成立。多米若骨牌才能有效。
|