|
來源: 新浪科技
用于此项研究的月表冲击熔融碎屑岩样品(编号73217)正交偏光透射显微照片。样品由阿波罗17号宇航员取自月表一处山丘滑坡区域。图像中可以很清楚的看到各种不同的矿物与碎屑物混杂在熔融岩浆物质中。
北京时间2月18日消息,据物理学家组织网站报道,自从美国宇航员从月球带回最后一批月球岩石样品至今已经过去了40多年了。自那以后这些样品接受了比一般的地质学样品全面和深入的多的各种测试。一个由美国亚利桑那州立大学的科学家领衔的团队近期通过创造性的运用激光微探针技术对阿波罗17号宇航员们带回的样品进行分析,获得了月球表面陨石撞击更加精确的时间序列。
陨击坑是塑造太阳系行星体固态表面最为普遍的地质过程之一。月球表面满目疮痍的撞击坑地貌记录着当年曾经延续了整个太阳系历史的陨星撞击事件。科学家们对于建立月面撞击坑的绝对年龄表尤其感兴趣,这是因为月球是理解地球早期陨星撞击历史的重要媒介,在地球上,早期的撞击坑早已被活跃的地质活动和侵蚀作用抹平消失。当然还有另外一个重要的原因,那就是由于早期太阳系内撞击事件的普遍性,我们可以经由对月球表面撞击历史的研究来帮助推算其他内太阳系天体的表面年龄。
亚利桑那州立大学的“第18组实验室”(Group 18 Laboratorie)由基普·霍吉斯(Kip Hodges)教授领衔,他们运用一种加装在高灵敏度质谱仪上的紫外激光微探针对阿波罗-17号返回样品中的氩同位素成分进行了分析。利用激光微探针测试40Ar/39Ar同位素的方法此前已经被广泛应用于地质学样品的地球化学定年,其中包括一些结构非常复杂的样品,但这还是这种方法第一次被用于对阿波罗计划取回的月岩样品进行分析。
亚利桑那州立大学研究团队此次所分析的样品是一类称称作“撞击熔融角砾岩”的岩石类型,简单来说这是一类由熔融玻璃,淹死碎屑以及矿物晶体碎粒混合胶结而成的岩石,其形成于陨星对月球表面的撞击熔融。
当一颗陨星撞击天体固体表面,将会释放出巨大的能量,其中的一部分会以冲击加热的方式被释放出来并造成目标岩体的熔融。这种极端环境条件将造成某些同位素定年体系被“重置”,尤其是那些在遭受撞击的过程中发生了冲击熔融的矿物类型。因此,科学家们在确定月球表面陨击坑的绝对年龄时的做法一般就是用同位素地球化学的方法对目标岩石中受到冲击加热并达到熔点,并在那之后重新凝结的矿物成分进行分析,这样得到的同位素定年结果就是撞击事件发生的时间。
然而,月球岩石很多在数十亿年的历史中都曾经遭受了不止一次的严重装置事件,在这一过程中其同位素体系被多次重置。这就让同位素定年变得复杂而棘手。
一般的经验认为,月球表面最大的撞击坑应当是最大部分撞击熔融物质的来源,因此几乎所有接受定年测定的样品都必定与那些规模最大的撞击坑有所关联。
的确,有数量巨大的撞击熔融物质是由形成撞击盆地规模的大型撞击事件的产物,但近期由美国宇航局月球勘测轨道器(LRO)拍摄的图像确认,即便是直径仅有100米量级的小型陨击坑同样也会产生撞击熔融物。亚利桑那州立大学的研究人员在2月12日出版的《科学进展》(Science Advances)杂志上报告了这项成果。
论文第一作者,亚利桑那州立大学地球与空间探测学院研究生卡梅伦·默瑟(Cameron Mercer)表示:“我们分析的样品之一,编号77115,仅仅记录下了一次撞击事件,它可能与形成盆地的大型撞击事件有关,也可能无关。相比之下,我们发现另一块样品,编号73217则保存有至少3次撞击事件的记录,事件跨度达数亿年之久。并非所有这些都能够与形成盆地的撞击事件联系起来。”
样品77115是由宇航员尤金·塞尔南(Eugene Cernan)和哈里森·施密特(Harrison Schmitt)在他们第三次也是最后一次月面行走时在第7采样点采集的,其中记录了单一的一次撞击事件,其发生时间是在大约38.3亿年前。而样品73217则是在第二次月面行走期间由宇航员在第三采样点采集的,其中记录着至少有3次独立的撞击事件,发生的时间则是介于38.1亿年至32.7亿年之间。这项成果表明,一块小小的样品中可以含有在数十亿年的时间跨度中多次撞击熔融事件留下的记录。
默瑟表示:“我们的研究结果强调了在分析样品时考虑其撞击定年的重要意义,尤其是那些拥有复杂,多种来源物源的样品。这一原则不仅适用于我们目前拥有的月球岩石额陨石收藏,同时也一样适用于我们在将来开展的载人或无人探测太阳系天体行动中取回的样品。”
|
|